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Abstract

We present the first algorithm for computing unstable manifolds of saddle-type periodic orbits with one unstable

Floquet multiplier in systems of autonomous delay differential equations (DDEs) with one fixed delay. Specifically, we

grow the one-dimensional unstable manifold W uðqÞ of an associated saddle fixed point q of a Poincar�ee map defined by a

suitable Poincar�ee section R. Starting close to q along the linear approximation to W uðqÞ given by the associated ei-

genfunction, our algorithm grows the manifold as a sequence of points, where the distance between points is governed

by the curvature of the one-dimensional intersection curve W uðqÞ \ R of W uðqÞ with R. Our algorithm makes it possible

to study global bifurcations in DDEs. We illustrate this with the break-up of an invariant torus and a subsequent crisis

bifurcation to chaos in a DDE model of a semiconductor laser with phase-conjugate feedback.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Delay differential equations (DDEs) have received a lot of attention recently, because models featuring a
delay term appear in areas of application as diverse as biology [28], neural networks [27] and control theory

[12]. Of particular technological importance are DDEs describing semiconductor lasers subject to delayed

feedback [20]. Semiconductor lasers are widely used today, and delay arises naturally, for example, due to

reflections on a CD or optical fiber. Apart from this case of so-called conventional optical feedback (COF)

[10,11,26], other examples of lasers with delay are mutually coupled lasers [17], lasers with opto-electronic

feedback [35], and lasers with phase-conjugate feedback (PCF) [1,13,19,25]. The latter system will serve as

the illustrating example, and it is introduced in Section 4.

The fundamental difficulty is that the phase space of a DDE is infinite-dimensional. We restrict ourselves
here to the important special case of an autonomous DDE with a single fixed delay; for example, all laser

systems just mentioned are of this form. For this class of DDEs the local bifurcation theory is quite well
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established; the relevant concepts are introduced in Section 2. However, it is difficult to apply this theory to

DDE models arising in applications, and the most one can hope for is a stability analysis of equilibria. Until

very recently, the only other way to study DDEs was by simulation, that is, by numerical integration; see

also Section 2.1.

The good news is, that this is now changing dramatically with the arrival of continuation software,

notably the package DDE-BIFTOOL [7–9], which allows the user to find and follow equilibria and periodic

orbits irrespective of their stability. Changes of the stability (local codimension-one bifurcations) can be

detected and also followed as parameters are varied; see Section 2.5. DDE-BIFTOOL essentially imple-
ments the local bifurcation theory of DDEs and has roughly the same functionality that the local bifur-

cation theory part of the well-known continuation package AUTO [5] has for ordinary differential

equations (ODEs). DDE-BIFTOOL is still under development with new capabilities being added; one is the

continuation of homoclinic and heteroclinic orbits to equilibria [32].

As is known from the respective theory for ODEs, the next step is to understand the global dynamics of a

DDE. To this end one needs to find not only saddle points and saddle periodic orbits, but also their global

stable and unstable manifolds. Except in the case of a one-dimensional unstable manifold of an equilibrium

[14] (see Section 2.2), they cannot be found by mere integration, but require more sophisticated methods.
In this paper, we make a step in this direction and present the first method to compute global unstable

manifolds of saddle periodic orbits with one unstable Floquet multiplier in autonomous DDEs with one

fixed delay. Specifically, we compute the one-dimensional unstable manifold of a saddle fixed point in a

suitable Poincar�ee map, which corresponds to a saddle periodic orbit of the DDE; see Section 3 for details.

We remark that we speak of a one-dimensional unstable manifold to stress that there is only one unstable

eigenfunction. The unstable manifold of a periodic orbit of a DDE is a two-dimensional object in an in-

finite-dimensional space, but one whose intersection with the Poincar�ee plane is a one-dimensional curve.

The basic idea is to generalize the method for finite-dimensional maps in [23] (now implemented in the
DSTOOL environment [2]) to the setting of DDEs. We use DDE-BIFTOOL to obtain the starting data

required by our method. At present, the implementation is stand-alone, but it is envisaged that it will be

integrated with DDE-BIFTOOL. Our method computes a piece of the unstable manifold of a set arclength,

represented by a minimum number of points while satisfying pre-specified accuracy parameters. While the

unstable manifold is a complicated object, its intersection with the Poincar�ee section, which we call the trace,

is a one-dimensional curve. Despite effects of projection from an infinite-dimensional space, this curve

conveys basically the same information as a one-dimensional unstable manifold of a fixed point of a planar

map. This allows one to identify and study, for the first time, global bifurcations in DDEs. As an example,
we show in Section 4 the break-up of a torus in the PCF laser and its subsequent transition to chaos in a

crisis bifurcation.

2. Background on DDEs

We now recall some basic facts on DDEs; see [4,16,34] as general references to the theory. Readers may

find it useful to look ahead to the concrete example of a laser with phase-conjugate feedback, system (10) in
Section 4, which is used for illustration throughout. We consider the simplest case, namely an autonomous

DDE with a single fixed delay. It has the general form

dxðtÞ
dt

¼ F ðxðtÞ; xðt � sÞ; kÞ; ð1Þ

where

F : Rn � Rn � Rp ! Rn
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is differentiable and where s 2 R is a fixed delay, while k 2 Rp represents a number of physical parameters.

Considering a single fixed delay is less of a restriction than it seems: for example, all of the laser systems

mentioned in Section 1 are in this class. Furthermore, the algorithm described in Section 3 also works for

delay equations with a finite number of fixed delays, by way of working with the largest such delay. Other

types of delay, such as state dependent delays, are beyond the scope of this paper.

Like it is the case for finite-dimensional vector fields, the function F assigns at a given moment t in time a

vector, but this vector now not only depends on the state xðtÞ but also on xðt � sÞ at time s earlier. The

solution of (1) is a function

x : ½�s;1Þ ! Rn; ð2Þ

which is a one-parameter family of vectors xðtÞ defined only for all positive values of time t. We call Rn the

physical space of the system, but the crucial thing is that Rn is not the phase space of (1). Indeed, one needs

to know the entire history of xð0Þ, that is, a continuous function on the interval ½�s; 0� for (1) to have a

unique solution. In other words, the phase space of (1) is the infinite-dimensional space of continuous

functions with values in the physical space Rn, denoted by C. When we speak of a point, say q 2 C, in what

follows we mean a point in this infinite-dimensional phase space, that is, q is a continuous function

q : ½�s; 0� ! Rn:

Further, we call qð0Þ the head of q and fqðtÞ j t 2 ½�s; 0Þg its history.

The evolution operator

Ut : C ! C ð3Þ

describes how an initial condition q 2 C evolves after time t. It is formally given by an abstract differential
equation on the infinite-dimensional phase space [6]. More geometrically, one can picture Ut as illustrated in

Fig. 1. The point q is mapped under Ut to a new point UtðqÞ. If one imagines letting time t run then UtðqÞ
moves over the solution x of (1) like a train over a roller coaster track.

In general, the flow is not defined for negative time. However, for special solutions, such as periodic

orbits and their stable and unstable manifolds, the flow can be defined also for negative time; see e.g.

[16].

Fig. 1. The evolution operator Ut of a DDE takes a point q to UtðqÞ for any positive t > 0. In projection onto the physical space Rn, the

point q is a finite piece of curve that is transported under Ut much like a train moving over a roller coaster track.
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2.1. Numerical integration

A DDE of the form (1) with a fixed delay can easily be integrated numerically with a fixed time-step

method, where the time-step is such that it fits an integer number of times into the delay time s. To this end,

one discretizes the history of every point, that is, the interval ½�s; 0�, into M subintervals. Here the integer M
is chosen such that the integration step s=M is sufficiently small. This induces a discretization of time t into
steps of s=M , yielding a numerical approximation of the evolution operator Us=M as the basic integration

step.

It is particularly useful to represent a point q by a circular list as is shown in Fig. 2(a), where root points

to the headpoint qð0Þ of q. In the simplest case of an Euler integration step, the point qð�sÞ is simply
overwritten by the new headpoint qðs=MÞ of Us=MðqÞ and root moves one node along the circular list. In our

simulations we use an Adams–Bashforth fourth-order multistep method, which requires storing a list up to

and including the vector qð�s � 3ðs=MÞÞ.

2.2. Equilibria

The simplest invariant object of (1) is an equilibrium point xðtÞ ¼ x0 for all t 2 ½0;1] and fixed x0 2 Rn,

which satisfies F ðx0; x0; k�Þ ¼ 0 (where the parameter is now fixed to k�). Its stability is determined by the

eigenvalues of the linearization DF ðx0; x0; k�Þ ¼ AxðtÞ þ Bxðt � sÞ around x0, where A ¼ D1F ðx0; x0; k�Þ and

B ¼ D2F ðx0; x0; k�Þ are the derivatives of F in (1) with respect to the first and second variable. The spectrum

of the operator DF consists only of eigenvalues and is given by the roots of the characteristic function

vðkÞ ¼ detðkI � A� Be�ksÞ. Furthermore, it is an important property that the eigenvalues are discrete and
there are at most finitely many unstable eigenvalues; see e.g. [16,34] for more details. One says that an

equilibrium x0 is hyperbolic, if DF ðx0; x0; k�Þ has no eigenvalues with zero real part. A hyperbolic equi-

librium x0 is either stable, namely if all of these eigenvalues have real part less than zero, or a saddle

otherwise. In the latter case one can consider the local unstable manifold W u
locðx0Þ, which is the set of points q

that can be integrated backwards, never leave a small neighborhood V of x0 under Ut for t < 0 and are such

that UtðqÞ ! x0 as t ! �1. The local unstable manifold W u
locðx0Þ is finite-dimensional and tangent to the

linear eigenspace Euðx0Þ spanned by the unstable eigenfunctions. The (global) unstable manifold W uðx0Þ is

Fig. 2. One Euler integration step applied to the circular list representing a point of a DDE. The delay interval is discretized into M þ 1

elements, with $ standing for the labels of the list elements. Before the integration step root points to qð0Þ (a), and after the integration

step root points to qðs=MÞ, which can be achieved by simply overwriting qð�sÞ and moving root (b). Only the two boldfaced list

elements close to root are needed for one Euler step.
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defined as W uðx0Þ ¼ fUtðpÞ jp 2 W u
locðx0Þ and t > 0g. The stable manifold W sðx0Þ is defined similarly as the

set of points that converge to x0 under Ut in positive time. Note that W sðx0Þ is always infinite-dimensional.

When there is one unstable eigenvalue then the unstable manifold W uðx0Þ is a smooth one-dimensional

curve in projection onto the physical space Rn. Both of its branches can be found by integrating two initial

conditions near x0 along the linear eigenspace Euðx0Þ. Approximations to both x0 and Euðx0Þ can be found

with the continuation software DDE-BIFTOOL; see Section 2.5. Examples of one-dimensional unstable

manifolds of equilibria can be found in [14].

It is much harder to compute higher-dimensional unstable manifolds of equilibria. It appears to be
possible that methods from ODEs [24] can be generalized to the DDEs case, but this is work for the future.

The main interest here is in computing the one-dimensional unstable manifold of a saddle point of the

Poincar�ee map associated with a given periodic orbit.

2.3. Periodic orbits and the Poincar�ee map of a DDE

A periodic point of (1) is a solution q 2 C such that UTðqÞ ¼ q for some (smallest) period T > 0. The

associated solution CðtÞ starting from q is a periodic orbit. In other words, a periodic orbit is a solution

along which any segment of length s repeats after time T. The periodic orbit C traces out a closed curve in

projection onto the physical space Rn.

A very useful concept is that of the Poincar�ee map P defined by the return to a suitable section transverse

to the flow of (1). For a prescribed section R � Rn we denote by CR the space of points in C with headpoints
in R. Then the Poincar�ee map P is defined as

P : CR ! CR; q 7!UtqðqÞ; ð4Þ

where tq > 0 is the return time to R. In other words, the headpoint of P ðqÞ again lies in the section R, as is

illustrated in Fig. 3.
One can always find a section R (locally) transverse to a periodic orbit C, so that the Poincar�ee map is well

defined at least locally near the intersection point with R, which is a fixed point q 2 CR under P (and a

periodic point of (1) as defined above); see Fig. 4.

The stability of a periodic orbit C is given by its Floquet multipliers, which are the eigenvalues of the

linearization DP ðqÞ of the Poincar�ee map P at the associated fixed point q 2 CR. The linearization DP ðqÞ is a

Fig. 3. The Poincar�ee map P takes a point q with qð0Þ 2 R to the point P ðqÞ with P ðqð0ÞÞ 2 R, which is shown in ðE;NÞ-space (a) and in

the ðReðEÞ;NÞ-plane (b) for the PCF laser (10).
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compact operator, which implies that its spectrum consists of countably many eigenvalues (the Floquet

multipliers) with the origin of the complex plane as their only possible accumulation point; see e.g. [16,34]

for more details. It follows that for any fixed r > 0 there is only a finite number of Floquet multipliers

outside a circle of radius r. In particular, there are always only a finite number of unstable Floquet mul-

tipliers, that is Floquet multipliers outside the unit circle. A periodic orbit is called hyperbolic if there are no

Floquet multipliers on the unit circle. A hyperbolic periodic orbit is either stable if all the Floquet mul-

tipliers are inside the unit circle or of saddle type with finitely many unstable Floquet multipliers.
If there are other Floquet multipliers on the unit circle then the system is undergoing a bifurcation. In

Section 4 we will encounter saddle-node, symmetry-breaking and torus (or Neimark–Sacker) bifurcations,

which are all associated with Floquet multipliers crossing the unit circle.

We now briefly discuss how one can compute the Poincar�ee map P in practice. Near q the map P can be

defined as the kth return to the section R for some fixed k, where k counts all intersections of the periodic

orbit with R (of which k � 1 are outside a small neighborhood of q). It is generally not possible to define P
globally as the kth return map to R for a fixed k. Indeed there typically are curves in R along which the flow

fails to be transverse, and this changes the number of returns to R. (This is in contrast to periodically forced
systems, which do have a globally defined Poincar�ee map in the form of the stroboscopic map of the forcing

frequency.) Such a tangency can occur at the begin point, an interior point or the end point of the orbit of

the flow. In our computations we deal with the case that a tangency occurs at an interior point: we detect it

and change the definition of P from being the kth to the ðk þ 2Þth (or the ðk � 2Þth) return to R. This is done

by monitoring the return time to R, which is a continuous function across this tangency. Indeed discon-

tinuities of the kth return map are encountered when computing a global object such as an unstable

manifold, and dealing with them as just explained allows us to compute longer pieces of manifolds; see

Section 4.3 for an example.

2.4. Unstable manifold of a fixed point

Suppose that a periodic orbit has Floquet multipliers outside the unit circle. For a suitable section R
transverse to the periodic orbit we consider the fixed point q 2 CR (with headpoint in R) of the associated

Poincar�ee map P . The local unstable manifold W u
locðqÞ of q is the set of all points p 2 CR that can be iterated

backwards under P , never leave a small neighborhood V of q and are such that P lðpÞ ! q as l ! �1. The

local unstable manifold W u
locðqÞ is finite-dimensional and tangent to the linear eigenspace EuðqÞ spanned by

Fig. 4. A periodic orbit C of the DDE and a periodic point q of the Poincar�ee map P (boldface), shown in ðE;NÞ-space (a) and in the

E-plane (b) for the PCF laser (10).
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the unstable eigenfunction. In the case that there is a single Floquet multiplier outside the unit circle then, in

projection onto the physical space Rn, the one-dimensional linear eigenspace EuðqÞ forms a one-parameter

family of directions along (the history of) q, as is illustrated in Fig. 5. The (global) unstable manifold W uðqÞ
can be defined as W uðqÞ ¼ fP lðpÞ jp 2 W u

locðqÞ and l > 0g.
The stable manifold W sðqÞ is defined similarly as the set of points that converge to q under P in positive

time. Again, W sðqÞ is always infinite-dimensional.

In projection onto the physical space Rn a one-dimensional unstable manifold W uðqÞ forms a compli-

cated object; see already Fig. 11 below. However, its trace W uðqÞ \ R is a one-dimensional curve that is
smooth (except possibly at isolated points due to the projection). The trace of the one-dimensional unstable

manifold W uðqÞ reveals about as much as a one-dimensional unstable manifold of a diffeomorphism in R2;

see Section 4.3. We remark that the trace may have self-intersections. This is an artifact of the projection

and reminds one of the fact that W uðqÞ lives in an infinite-dimensional phase space.

2.5. Numerical continuation

The recently developed continuation package DDE-BIFTOOL [7–9] goes far beyond simulation. DDE-

BIFTOOL consists of Matlab routines for the continuation and bifurcation analysis of steady states and

periodic solutions. Roughly speaking it has the same functionality for DDEs as (the local bifurcation part

of) the well-known package AUTO [5] does for ODEs. It not only allows one to find and follow stable

solutions (those also found by simulation), but unstable ones as well. Furthermore, DDE-BIFTOOL de-
tects the codimension-one local bifurcations listed, namely saddle-node, Hopf, period-doubling, saddle-

node of limit cycles, and torus bifurcations.

More specifically, DDE-BIFTOOL solves a large system that is obtained by discretizing the delay in-

terval ½�s; 0� as described in Section 2.1. It uses arclength continuation to follow equilibria and periodic

orbits as a parameter is varied. Periodic orbits are represented by a suitable boundary value problem, which

is solved using Gauss collocation. By also solving for the eigenvalues, the above local bifurcations, for

equilibria, are detected and can then be followed in two parameters; for further details see [7–9].

The usefulness of DDE-BIFTOOL can hardly be exaggerated. It enables continuation studies of local
bifurcations in DDEs in much the same way as one is used to perform for ODEs. DDE-BIFTOOL has not

been used that widely yet, but there are already some examples of its use in applications, for example, the

study of a laser with COF in [30,31] and our own work on the PCF laser; see Section 4 and [14,15].

Fig. 5. A periodic point of saddle-type q together with the linear line field approximating the unstable linear eigenspace (only every

100th line of the discrete representation is shown), shown in ðE;NÞ-space (a) and in the ðReðEÞ;NÞ-plane (b) for the PCF laser (10).
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In the context of computing one-dimensional unstable manifolds of periodic orbits, DDE-BIFTOOL is

crucial for finding periodic orbits with one unstable Floquet multiplier as starting data.

3. Computing one-dimensional unstable manifolds

Let q 2 CR be a saddle fixed point of a Poincar�ee map P defined by a section R transverse to the periodic

orbit that corresponds to q. We further assume that the periodic orbit has exactly one unstable Floquet
multiplier, so that the linearization DP ðqÞ of P has one unstable eigenvalue (which lies outside the unit

circle). The goal is to compute the one-dimensional unstable manifold W uðqÞ.
The basic idea is to realize that practically any of the known algorithms for computing one-dimensional

unstable manifolds of saddle points of finite-dimensional maps can be generalized to the setting of DDEs by

working on points in CR, instead of on points in a finite-dimensional space. While this sounds simple, all

relevant operations, such as the iteration of the Poincar�ee map and interpolation, need to be interpreted and

implemented as operations on points inCR, or rather on their discretizations as circular lists. This can be done

by applying all respective operations pointwise to the elements of the respective circular lists; see Fig. 2.
We chose to implement the generalization of the growth method in [23], because it computes the min-

imum number of points necessary to achieve an accurate representation of W uðqÞ (according to pre-

specified accuracy parameters) by taking account of the curvature along the manifold. Using as few points

as possible while maintaining a prescribed quality of the computation is particularly important in the

setting of DDEs because every point in C is discretized and represented by a circular list of ðM þ 4Þ � n real

numbers; see Section 2.1. We remark that we do not adapt the integration step size during a computation,

but use a fixed time step s=M throughout.

3.1. Starting data

The starting data for a computation of an unstable manifold are the saddle periodic point q together

with the knowledge of the linear eigenfunction EuðqÞ, which we represent by a (generalized) vector
v ¼ fvðtÞ j t 2 ½�s; 0�g whose elements are unit vectors. Both of these objects are represented as circular lists

of length M þ 4, because of the integration method we use; see Section 2.1.

The saddle periodic point q can be found as follows. With the help of DDE-BIFTOOL, one continues

periodic orbits of the DDE until a suitable saddle periodic orbit with one unstable eigenvalue is found.

From this orbit one extracts the saddle periodic point q by choosing a point qð0Þ in the prescribed section R
together with its history. Because the required headpoint qð0Þ will generally not be part of the mesh used by

DDE-BIFTOOL to represent the saddle periodic orbit, this step requires interpolation. Fig. 4 shows a

periodic orbit C of saddle-type computed by continuation with DDE-BIFTOOL, on which a periodic point
q 2 CR has been selected. Notice that C intersects the chosen section R twenty times, so that P can be

defined locally near q as the 20th return to R.

The next step is to find the vector v, which is a circular list defining a direction at every discretization

point of the delay interval. As finding v is not yet implemented in DDE-BIFTOOL, we use the following

method. Choose a starting point close to q along some chosen direction v0 and perform a small number m of

iterations under the Poincar�ee map P , yielding evv1 ¼ Pmðqþ gv0Þ � q. Normalizing evv1 such that each element

of the circular list is a unit vector gives a first approximation v1 of v. This process can be repeated, yielding

the approximation v2 ¼ ðP lðqþ gv1Þ � qÞ=jP lðqþ gv1Þ � qj, and so on until one is satisfied with the accu-
racy. In Fig. 5 we illustrate v by plotting its every 100th element.

We finally remark that the above procedure finds the unstable eigenfunction v of the strongest unstable

eigenvalue when there are other unstable eigenvalues. In this case, the algorithm described below computes

the strong unstable manifold, which is tangent to this vector v.
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3.2. Growing the manifold

With the knowledge of (approximations to) q and v one can implement one�s favorite method for

computing the associated one-dimensional unstable manifold W uðqÞ; for example those in [18,22,23,

29,36].

The easiest method is fundamental domain iteration. Take a fixed number of points on the segment

P ðqþ dvÞ � ðqþ dvÞ and iterate them under the Poincar�ee map P . Because of its invariance, all iterates

will lie on W uðqÞ in good approximation. However, the distribution of points along W uðqÞ is generally

poor. Nevertheless, the computational error of these points is determined only by the initial distance d
along v and the accuracy of the integration, a fact that will be utilized in Section 4. There are several
methods to ensure a suitable distribution of computed points along W uðqÞ [18,29,36]; see also the discussion

in [23].

The method we decided to generalize to the setting of DDEs is that in [23], which entirely steps away

from the idea of using a fundamental domain. The manifold W uðqÞ is represented by a list of points in CR

with the understanding that linear interpolation is used between consecutive points of this list. The idea is to

find the next point pkþ1 along W uðqÞ at some distance Dk from the last point pk. This is done by finding a

pre-image p̂p of pkþ1 in the part of W uðqÞ that was already computed. This idea is sketched in Fig. 6. The

algorithm first finds the two points pl and plþ1 between which p̂p must lie and then determines p̂p by bisection
along the linear interpolation between pl and plþ1, such that the respective headpoints satisfy

ð1� eÞDk < jP ðp̂pð0ÞÞ � pkð0Þj < ð1þ eÞDk; ð5Þ

where e is a pre-specified tolerance. In fact, one can take e relatively large without loss of accuracy, which

makes the method more efficient by reducing the number of bisection steps dramatically [23]. The linear

interpolation between pl and plþ1 is defined pointwise for all t 2 ½�s; 0�.

Fig. 6. Sketch of the algorithm. The new point pkþ1 lies at distance Dk from pk , and it is found as the image of an interpolated point bpp
on the part of W uðqÞ that was already computed. To indicate that we are dealing with a DDE we sketch this situation in physical space;

the headpoint of each point lies in the section R.
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The distance Dk is adapted during the computation depending on the curvature of the trace of the

manifold W uðqÞ \ R in the section R. This is done because we want to represent the trace faithfully with as

few points as possible; see Section 3.3 for a discussion of what this means in terms of the accuracy of our

method. We use a criterion first used in [23] to accept the new point; for details see also [18]. The quantity

ak ¼
j�ppð0Þ � pk�1ð0Þj
jpkð0Þ � pk�1ð0Þj

ð6Þ

is an approximation of the angle a between the line segments from pk�1ð0Þ to pkð0Þ and from pkð0Þ to

pkþ1ð0Þ, where

�ppð0Þ ¼ pkð0Þ þ jpkð0Þ � pk�1ð0Þj
ðpkð0Þ � pkþ1ð0ÞÞ
jpkð0Þ � pkþ1ð0Þj

: ð7Þ

Note that the angle is only computed in the section R.

The key is to check the conditions

amin < ak < amax; ð8Þ

ðDaÞmin < Dkak < ðDaÞmax; ð9Þ

where the bounds are four pre-specified accuracy parameters. Condition (8) states that ak should be small,

while condition (9) controls the local interpolation error.

If both ak < amax and Dkak < ðDaÞmax then Dk is acceptable and the point P ðp̂pÞ is accepted as the new

point pkþ1. We keep the estimate for Dk unchanged, that is, Dkþ1 ¼ Dk, except if both ak < amin and
Dkak < ðDaÞmin. Then we set Dkþ1 ¼ 2Dk. If ak P amax or Dkak P ðDaÞmax then Dk is too large and pkþ1 is not

accepted. We set Dk ¼ 1
2
Dk and find a new candidate. At sharp bends of the manifold it may not be possible

to ensure that ak P amax without making Dk impractically small. In this case, we accept the candidate pkþ1

after all if Dk < Dmin for a pre-specified number Dmin. By choosing these accuracy parameters suitably, one

can ensure that bends do not get cut off; see the discussion in [23].

The computation stops after a prescribed arclength distance of the trace W uðqÞ \ R has been reached.

However, it may be that W uðqÞ \ R does not have such a large arclength, which occurs typically when the

manifold ends up at an attracting fixed point. Convergence of new points on the manifold is detected when
Dk dips under a pre-specified value and the computation also stops.

3.3. On the accuracy

By a computation we mean the computation of a piece of one branch of W uðqÞ up to some prescribed

arclength. When computing a global invariant manifold it is generally impossible to derive a priori bounds

on the accuracy parameters one needs to choose in order to achieve a given accuracy. Furthermore, the

accuracy of a calculation generally becomes worse as longer pieces of W uðqÞ are computed; compare [21–

23]. Therefore, the only practical way of checking the accuracy of a computation in practice is to repeat it

with increased accuracy and to compare the results. If the difference between the two approximations of

W uðqÞ is smaller than some user-defined bound, then the computation can be accepted as accurate enough.

This is certainly the strategy a user should adopt when using the algorithm presented here.
In the examples below we used a different method to illustrate the accuracy of our computations, namely

to overlay points obtained by fundamental domain iteration, also starting from q� dv. While these overlaid

points are not well distributed along W uðqÞ, their computation does involve only integration, and not in-

terpolation. It is therefore a good test to check that these points all lie on the approximation of W uðqÞ
computed with our method; see already Section 4.3.
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We now discuss briefly what contributes to the error of a computation, where we follow [23]. The first

contribution to the overall error depends on the initial distance d along EuðqÞ and on the distribution of

mesh points along W uðqÞ. As is the case for the algorithm for finite-dimensional maps, the initial error

between q� dv and W u
locðqÞ goes to zero with d. Note that v is only known approximately, but the difference

between v and EuðqÞ can be made arbitrarily small. Further, W uðqÞ is a collection of P -images of W u
locðqÞ

and, due to the hyperbolicity of q, W uðqÞ is attracting in some neighborhood U of q, so that the initial error

will be damped in this neighborhood. However, outside U the initial error grows with the number of it-

erates that are needed to cover the computed part of W uðqÞ.
Outside U the total integration time is bounded from above implicitly by the maximal integration time

used to compute (the finitely many iterations of) the Poincar�ee map. Therefore, the numerical integration is

supposed to be accurate enough so that the integration error makes a negligible contribution to the overall

error of the computation.

Because the manifold is grown by taking images of interpolated points, the interpolation error eI between

the mesh points is important. The key thing is to keep the distance between two consecutive mesh points pl
and plþ1 small, depending on the curvature of W uðqÞ. It would be possible to check the curvature pointwise

between three consecutive points for all points along the history, that is, for all t 2 ½�s; 0�. However, this
would be computationally very expensive. Therefore, we chose to let Dk, the distance to the next point,

depend only on the curvature of the trace W uðqÞ \ R. As in the finite-dimensional case, the distance, and

hence the local interpolation error, between the headpoints plð0Þ and plþ1ð0Þ is controlled by keeping the

product Dkak small; see [18,23].

The main reason for considering only the curvature of the trace is the following. It is ultimately the

trace that we want to work with in applications, so that it makes sense to represent it well with as few

points as possible. But further, this strategy also ensures that the local interpolation error between a pair

of points pl and plþ1 is bounded not just for t ¼ 0 but for all t 2 ½�s; 0�, because the error jplþ1ðtÞ � plðtÞj
depends continuously in t on jplþ1ð0Þ � plð0Þj. Clearly, the error jplþ1ðtÞ � plðtÞj can be very large, but it

does go to zero with jplþ1ð0Þ � plð0Þj. Therefore, over a finite computation, the overall interpolation error

is bounded.

We found that our strategy works well for the examples we considered: indeed the distance between pl
and plþ1 is nicely bounded for all l and t 2 ½�s; 0�, as can be seen in Fig. 11 below. We repeat that it is

impossible to find a priori error bounds for this error, so that a computation should not be trusted blindly.

Instead, as mentioned above, one should check the accuracy by increasing the accuracy bounds.

4. Example: the PCF laser

To illustrate the performance of our algorithm, we consider a semiconductor laser receiving phase-

conjugate feedback (PCF) from a phase-conjugating mirror (PCM) [1]; see Fig. 7. This form of feedback

Fig. 7. Sketch of a semiconductor laser with phase-conjugate feedback.
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is physically interesting as it produces a return wave which coincides exactly with the incident wave, so

that the system is self-aligning. Furthermore, due to the phase-conjugating nature of the mirror, dis-

tortions are undone on the return trip in the external cavity. This system, the PCF laser in short, has

been used as a stable (high-power) source in applications, for example, for frequency control and mode-

switching [3,33].

The PCF laser is a technologically relevant example of a DDE. Its physical space is three-dimensional,

that is, n ¼ 3 in (1), and this has the advantage of allowing for good illustrating figures in R3. Apart from its

stable operation, the PCF laser was shown to exhibit complicated nonlinear dynamics, including stable
periodic operation, quasiperiodic motion and chaos. This was found in detailed simulations of bifurcation

diagrams, phase plots and optical spectra [13,19]. As the feedback strength is increased, the overall picture

is that of regions of periodic output that are interspersed with �bubbles� of chaos. In order to understand in

more detail the nature of different transitions to chaos one needs to use new numerical techniques, namely

the combination of DDE-BIFTOOL with the manifold computations introduced here. The results of this

ongoing effort will be published elsewhere [14,15]. Here we use the PCF laser to illustrate the computation

of one-dimensional unstable manifolds.

4.1. Rate equations

A single-mode semiconductor laser subject to weak (instantaneous) PCF is modeled by the rate equa-

tions

dEðtÞ
dt

¼ 1

2

�
� iaGN ðNðtÞ � NsolÞ þ GðtÞ

�
� 1

sp

��
EðtÞ þ jE�ðt � sÞ exp½i/PCM�; ð10Þ

dNðtÞ
dt

¼ I
q
� NðtÞ

se
� GðtÞjEðtÞj2; ð11Þ

for the evolution of the slowly varying complex electric field EðtÞ 2 C and the population inversion

NðtÞ 2 R [19]; E� is standard physical notation for the complex conjugate of E. Nonlinear gain is included as

GðtÞ ¼ GN ðNðtÞ � N0Þð1� �PðtÞÞ, where � ¼ 3:57� 10�8 is the nonlinear gain coefficient and PðtÞ ¼ jEðtÞj2
is the intensity. The different parameters are set to realistic values of a Ga–Al–As semiconductor laser

[13,19], namely the line-width enhancement factor a ¼ 3, the optical gain GN ¼ 1190s�1, the photon life-

time sp ¼ 1:4ps, the injection current I ¼ 65:1mA, the magnitude of the electron charge q ¼ 1:6� 10�19 C,

the electron lifetime se ¼ 2ns, and the transparency electron number N0 ¼ 1:64� 108. The phase shift /PCM

was set to zero and Nsol ¼ N0 þ 1= ðGNspÞ. The delay (the external cavity round-trip time) s was fixed at
s ¼ 2=3ns and the feedback rate j is the main bifurcation parameter.

In what follows we consider the dependence of (10) on the dimensionless bifurcation parameter js. To

obtain a range of order 1 of the E and N values covered by the periodic orbits we consider, we rescaled EðtÞ
by a factor of 1:0� 10�2 and NðtÞ by a factor of 1:0� 10�6. This does not change any of the dynamics, but

is important during our computations of unstable manifolds.

System (10) is symmetric under the transformation E ! �E, which is the rotation of the E-plane by p.
Any attractor or other invariant set is either symmetric, or has a symmetric counterpart [19,25]. This has

consequences for the types of bifurcations that can occur. In particular, when a Floquet multiplier of a
symmetric periodic orbit goes through þ1 then this may indicate a symmetry breaking bifurcation [15]

rather than a saddle-node bifurcation of limit cycles.

The number of discretization intervals was set to M ¼ 2500 for all computations in this paper (giving an

integration step of s=2500). In other words, every point q 2 C was represented by a circular list with 2504

list elements, each consisting of three double-precision numbers to store E and N .
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4.2. The bifurcation diagram

To illustrate our method we focus on a transition to chaos via the break-up of a torus in the interval

js 2 ½2:3; 2:6�. In the notation of [13,19], this occurs at the beginning of the second �bubble� of complicated

dynamics. More details on the dynamics associated with the bifurcations of this torus can be found in [15].

The bifurcation diagram in Fig. 8(a) was obtained by simulation: for a new value of js we integrated (10)

starting from the attractor for the previous js, let transients die away, and then plotted N̂N ¼
ðN=Nsol � 1Þ � 103 whenever the intensity P ðtÞ ¼ jEðtÞj2 crossed its average value in the positive direction

[19]. Fig. 8(a) tells one what happens to the (main) attractor. It seems that a periodic orbit becomes unstable

when a torus is born, the dynamics on this torus appears to be quasiperiodic at first, but then locks to a
periodic orbit as five distinct branches appear. This new periodic orbit seems to undergo a torus bifurcation

of its own. The new torus then suddenly disappears and a region of chaos is entered. We remark that there

is no hysteresis when changing the direction of the sweep in js.
As a first step to understand what is going on we started a DDE-BIFTOOL computation from the stable

locked periodic orbit for js ¼ 2:445 that we found by numerical integration. The result is shown in Fig.

8(b), where the period of the respective periodic orbit is plotted against js. At js � 2:441 a stable and a

saddle periodic orbit are born on the torus in a saddle-node bifurcation of limit cycles, which corresponds

to the beginning of locked dynamics. The stable periodic orbit disappears in a torus bifurcation T that is
detected at js � 2:556. The bifurcating torus is stable and it is like a hose winding around the original

torus; see [15] for more details. Both the stable and the saddle periodic orbits undergo symmetry breaking

bifurcations at the points denoted SB. They are in fact connected by a branch of non-symmetric periodic

orbits; see [15] for details. On the lower branch between the points SL and SB the unstable periodic orbit has

exactly one unstable Floquet multiplier.

4.3. One-dimensional unstable manifolds

Our method is implemented in C++ and its performance is demonstrated with the one-dimensional

unstable manifolds of periodic points associated with the periodic orbit in Fig. 4 of the PCF laser (10) for

js ¼ 2:500.
The periodic point q in Figs. 3 and 4 has the one-dimensional unstable linear eigenspace EuðqÞ shown in

Fig. 5. It was computed as described in Section 3.1 and stored in the normalised vector v. The computation

Fig. 8. The bifurcation diagram for js 2 ½2:3; 2:6� found by simulation (a), and the continuation with DDE-BIFTOOL of periodic

orbits for js 2 ½2:4; 2:8� (b).
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of W uðqÞ was started at a distance d ¼ 1:0� 10�4, while the accuracy parameters (detailed in Section 2.4)

were amin ¼ 0:2, amax ¼ 0:3, ðDaÞmin ¼ 1:0� 10�3, ðDaÞmax ¼ 1:0� 10�4, Dmin ¼ 1:0� 10�2 and e ¼ 0:2.
Convergence of the manifold to a stable periodic orbit was detected when Dk fell below 5:0� 10�4.

Fig. 9(a) shows the trace in the section R defined by N ¼ 762:0. The points that were computed are

shown in Fig. 9(b), illustrating the distribution of points along W uðqÞ [ R according to its curvature. Fig.

9(c) shows points obtained by iterating 100 initial points in a fundamental domain. While their distribution

is such that one does not obtain a good image of the manifold, they lie on the trace of the true manifold to

within the accuracy of integration. Indeed, an overlay of panels (a) and (c) in Fig. 9(d) demonstrates the
accuracy of the computed trace; the distance of the iterated points to the computed branch is less than

1:5� 10�3. Note that the trace has self-intersections and sharp bends, which are both due to the projection,

and eventually spirals into an attracting periodic point.

Fig. 10(a) shows the overall picture with all branches of all five periodic points corresponding to the

periodic orbit, rendered from the computed points in Fig. 10(b). Points obtained by fundamental domain

iteration in Fig. 10(c) again lie on the computed one-dimensional trace, as is illustrated in Fig. 10(d). The

five saddle points are mapped to each other by the fourth return to R. The unstable manifolds converge to

five attracting equilibria, which correspond to the five branches in Fig. 8(a).

Fig. 9. The trace of one branch of the unstable manifold of the saddle-point (+), which spirals into an attractor (�). Shown is the

branch computed by our algorithm (a), the distribution of points along this branch (b), and the branch computed by fundamental

domain iteration (c). Part (d) shows that all points of (c) lie exactly on the computed branch from (a). This branch is for js ¼ 2:500 and

it is one of the branches in Fig. 10.
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Finally, we show in Fig. 11 the manifolds corresponding to the traces in Figs. 9 and 10 in pro-

jection onto ðE;NÞ-space (left column) and onto the E-plane (right column). This reveals their intricate
structure and highlights their high-dimensional nature. One can imagine the one-dimensional trace in R
as a �curtain rail� along which the �curtain� W uðqÞ, made up of the headpoints in Figs. 9(b) and 10(b)

together with their histories, is drawn during the growth process. This is shown in an animation

accompanying this paper, which can be accessed at http://www.enm.bris.ac.uk/staff/berndk/ddeman.

html.

The manifolds in Fig. 10(a) form a continuous curve, which is in fact what is left of the torus after

locking. A detailed study of the bifurcations of this torus can be found in [15]. Here we merely demonstrate

the usefulness of our algorithm in Fig. 12 with the traces in the section R of all branches of the one-di-
mensional unstable manifolds of five saddle points for four increasing values of js. This reveals the classic

picture of locking on a smooth torus in Fig. 12(a). However, as js is increased the unstable manifolds start

to spiral into the five attracting equilibria, a sign that the torus has lost its smoothness; see Fig. 12(b), where

js ¼ 2:450. When js is increased even further the manifolds develop into an increasingly complicated shape

as in Fig. 12(c) and (d) for js ¼ 2:480 and js ¼ 2:500, respectively (note that Figs. 9 and 10 correspond to

Fig. 12(d)). This is a precursor of a crisis bifurcation, which is responsible for the sudden transition to chaos

that is apparent in Fig. 8.

Fig. 10. The traces of all branches in R emanating from both sides of the five saddle-points (+) converging to five attractors (�) for

js ¼ 2:500. Panels (a)–(d) illustrate the performance of our algorithm as in Fig. 9.
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Fig. 13 shows the development of a single branch of the unstable manifold of a fixed point when js is

changed through the symmetry breaking bifurcation SB on the lower branch in Fig. 8. Fig. 13(d) corre-

sponds to a situation where there are two unstable eigenvalues, the one that is involved in the symmetry

breaking being very small. As was explained in Section 3.1, our method computes the strong unstable
manifold in this case. As is evident from Fig. 13, the strong unstable manifold is the continuation of the

one-dimensional unstable manifold before the bifurcation. This is the case as long as the same unstable

eigenvalue remains the strongest one.

Finally, Fig. 14(a) shows the trace of one branch of an unstable manifold that encounters interior

tangencies where the kth return map is discontinous. Near the fixed point q, where the computation starts, P
is defined as the 20th return to R. However, the boldfaced part of the trace corresponds to points where P is

defined as the 18th return to R. In Fig. 14(b) we plotted the integration time for each computed point, and

this clearly shows that, although the number of returns to R varies along the branch, the integration time is
a continuous function. In other words, we are indeed following the right branch of P . As mentioned in

Section 2.3, this technique of adapting the number of returns to the section during a computation allows

one to compute longer pieces of W uðqÞ.

Fig. 11. One branch of the unstable manifold (shown in Fig. 9 in the section R) in ðE;NÞ-space (a) and in the E-plane (b), and all

branches emanating from both sides of the five saddle-points (shown in Fig. 10 in the section R) in ðE;NÞ-space (c) and in the E-plane
(d).
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5. Conclusions

We presented an algorithm for computing one-dimensional unstable manifolds of saddle fixed points of

a Poincar�ee map of a DDE, which generalizes the method for finite-dimensional maps in [23] to Poincar�ee
maps of DDEs. Behind this is the idea to work with points in the infinite-dimensional phase space of the

DDE just like with points in a finite-dimensional space. While this sounds simple, it requires the extension
of all operations, such as computing the Poincar�ee map or interpolation, to the infinite-dimensional setting,

which can be achieved by performing the respective operation pointwise along the entire history of a point.

Note that computations for DDEs are much more data intensive than those for ODEs or maps, because

one needs to deal with (the discretizations of) all histories. Our method uses DDE-BIFTOOL to generate

the starting data, and it is planned to combine continuation and manifold computations.

Any method for growing unstable manifolds in ODEs or maps could be generalized in the same way

to DDEs or their Poincar�ee maps. We have taken here the first step by computing one-dimensional

unstable manifolds of saddle points. It is an interesting challenge for future work to compute two-
dimensional unstable manifolds of equilibria by generalizing the method in [24], and two-dimensional

unstable manifolds of saddle fixed points (corresponding to periodic orbits of the DDE) by generalizing

that in [21].

Fig. 12. As js is increased, the smooth torus at js ¼ 2:445 (a) loses its smoothness at js ¼ 2:450 (b). As js is increased further through

js ¼ 2:480 (c) and js ¼ 2:500 (d), the torus becomes increasingly folded and stretched.
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The performance of our method was demonstrated with the rate equation model (10) of a semiconductor

laser subject to phase-conjugate feedback. The physical space of this system is three-dimensional, so that

the condition defining the Poincar�ee section R corresponds to a two-dimensional plane in physical space.

Fig. 13. Trace of one branch of the unstable manifold of the saddle-point q for js ¼ 2:5197 (a), js ¼ 2:5271 (b), js ¼ 2:5310 (c), and

the trace of the strong unstable manifold for js ¼ 2:5348 (d).

Fig. 14. Trace of a single branch of the unstable manifold for js ¼ 2:550 (a) covering a large area. The Poincar�ee map is normally the

20th return to R, but along the boldfaced sections it is the 18th return to R. Nevertheless, the integration time for each point along the

branch is a continuous function (b).
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This is very helpful because the traces of the respective manifolds look just like one-dimensional unstable

manifolds of a planar map. However, there will generally be self-intersections and isolated points of non-

smoothness due to projection, which are a reminder of the inherently infinite-dimensional nature of the

problem. While it is useful to work with a three-dimensional projection, we remark that it is not necessary

that the physical space is three-dimensional. Alternatively, one can consider any three-dimensional space

onto which one projects the infinite-dimensional phase space of the DDE, so that R again defines a two-

dimensional subspace in this space.

Combined with the continuation of saddle periodic orbits, the computation of one-dimensional mani-
folds presented here allows one to study global bifurcations in DDEs for the first time in much the same

spirit as one does in ODEs. This was demonstrated here with the example of the break-up of a torus and a

subsequent crisis bifurcation to chaos; further details can be found in [15]. In ongoing research we inves-

tigate other global bifurcations and transitions to chaos in the PCF laser. The method presented here

contributes to the theory of global bifurcations in DDEs, and will be equally useful for the study of other

systems with delay.
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